144 research outputs found

    Quantum adiabatic optimization and combinatorial landscapes

    Full text link
    In this paper we analyze the performance of the Quantum Adiabatic Evolution algorithm on a variant of Satisfiability problem for an ensemble of random graphs parametrized by the ratio of clauses to variables, Îł=M/N\gamma=M/N. We introduce a set of macroscopic parameters (landscapes) and put forward an ansatz of universality for random bit flips. We then formulate the problem of finding the smallest eigenvalue and the excitation gap as a statistical mechanics problem. We use the so-called annealing approximation with a refinement that a finite set of macroscopic variables (versus only energy) is used, and are able to show the existence of a dynamic threshold Îł=Îłd\gamma=\gamma_d starting with some value of K -- the number of variables in each clause. Beyond dynamic threshold, the algorithm should take exponentially long time to find a solution. We compare the results for extended and simplified sets of landscapes and provide numerical evidence in support of our universality ansatz. We have been able to map the ensemble of random graphs onto another ensemble with fluctuations significantly reduced. This enabled us to obtain tight upper bounds on satisfiability transition and to recompute the dynamical transition using the extended set of landscapes.Comment: 41 pages, 10 figures; added a paragraph on paper's organization to the introduction, fixed reference

    On the relationship between continuous- and discrete-time quantum walk

    Full text link
    Quantum walk is one of the main tools for quantum algorithms. Defined by analogy to classical random walk, a quantum walk is a time-homogeneous quantum process on a graph. Both random and quantum walks can be defined either in continuous or discrete time. But whereas a continuous-time random walk can be obtained as the limit of a sequence of discrete-time random walks, the two types of quantum walk appear fundamentally different, owing to the need for extra degrees of freedom in the discrete-time case. In this article, I describe a precise correspondence between continuous- and discrete-time quantum walks on arbitrary graphs. Using this correspondence, I show that continuous-time quantum walk can be obtained as an appropriate limit of discrete-time quantum walks. The correspondence also leads to a new technique for simulating Hamiltonian dynamics, giving efficient simulations even in cases where the Hamiltonian is not sparse. The complexity of the simulation is linear in the total evolution time, an improvement over simulations based on high-order approximations of the Lie product formula. As applications, I describe a continuous-time quantum walk algorithm for element distinctness and show how to optimally simulate continuous-time query algorithms of a certain form in the conventional quantum query model. Finally, I discuss limitations of the method for simulating Hamiltonians with negative matrix elements, and present two problems that motivate attempting to circumvent these limitations.Comment: 22 pages. v2: improved presentation, new section on Hamiltonian oracles; v3: published version, with improved analysis of phase estimatio

    Quantum search by measurement

    Get PDF
    We propose a quantum algorithm for solving combinatorial search problems that uses only a sequence of measurements. The algorithm is similar in spirit to quantum computation by adiabatic evolution, in that the goal is to remain in the ground state of a time-varying Hamiltonian. Indeed, we show that the running times of the two algorithms are closely related. We also show how to achieve the quadratic speedup for Grover's unstructured search problem with only two measurements. Finally, we discuss some similarities and differences between the adiabatic and measurement algorithms.Comment: 8 pages, 2 figure

    Using an integral projection model to assess the effect of temperature on the growth of gilthead seabream Sparus aurata

    Get PDF
    Accurate information on the growth rates of fish is crucial for fisheries stock assessment and management. Empirical life history parameters (von Bertalanffy growth) are widely fitted to cross-sectional size-at-age data sampled from fish populations. This method often assumes that environmental factors affecting growth remain constant over time. The current study utilized longitudinal life history information contained in otoliths from 412 juveniles and adults of gilthead seabream, Sparus aurata, a commercially important species fished and farmed throughout the Mediterranean. Historical annual growth rates over 11 consecutive years (2002-2012) in the Gulf of Lions (NW Mediterranean) were reconstructed to investigate the effect of temperature variations on the annual growth of this fish. S. aurata growth was modelled linearly as the relationship between otolith size at year t against otolith size at the previous year t-1. The effect of temperature on growth was modelled with linear mixed effects models and a simplified linear model to be implemented in a cohort Integral Projection Model (cIPM). The cIPM was used to project S. aurata growth, year to year, under different temperature scenarios. Our results determined current increasing summer temperatures to have a negative effect on S. aurata annual growth in the Gulf of Lions. They suggest that global warming already has and will further have a significant impact on S. aurata size-at-age, with important implications for age-structured stock assessments and reference points used in fisheries

    Exploiting quantum parallelism of entanglement for a complete experimental quantum characterization of a single qubit device

    Full text link
    We present the first full experimental quantum tomographic characterization of a single-qubit device achieved with a single entangled input state. The entangled input state plays the role of all possible input states in quantum parallel on the tested device. The method can be trivially extended to any n-qubits device by just replicating the whole experimental setup n times.Comment: 4 pages in revtex4 with 4 eps figure

    Efficient Algorithms for Universal Quantum Simulation

    Full text link
    A universal quantum simulator would enable efficient simulation of quantum dynamics by implementing quantum-simulation algorithms on a quantum computer. Specifically the quantum simulator would efficiently generate qubit-string states that closely approximate physical states obtained from a broad class of dynamical evolutions. I provide an overview of theoretical research into universal quantum simulators and the strategies for minimizing computational space and time costs. Applications to simulating many-body quantum simulation and solving linear equations are discussed

    Quantum tunneling on graphs

    Full text link
    We explore the tunneling behavior of a quantum particle on a finite graph, in the presence of an asymptotically large potential. Surprisingly the behavior is governed by the local symmetry of the graph around the wells.Comment: 18 page

    Quantum random walks with decoherent coins

    Get PDF
    The quantum random walk has been much studied recently, largely due to its highly nonclassical behavior. In this paper, we study one possible route to classical behavior for the discrete quantum walk on the line: the presence of decoherence in the quantum ``coin'' which drives the walk. We find exact analytical expressions for the time dependence of the first two moments of position, and show that in the long-time limit the variance grows linearly with time, unlike the unitary walk. We compare this to the results of direct numerical simulation, and see how the form of the position distribution changes from the unitary to the usual classical result as we increase the strength of the decoherence.Comment: Minor revisions, especially in introduction. Published versio

    Measuring Energy, Estimating Hamiltonians, and the Time-Energy Uncertainty Relation

    Get PDF
    Suppose that the Hamiltonian acting on a quantum system is unknown and one wants to determine what is the Hamiltonian. We show that in general this requires a time Δt\Delta t which obeys the uncertainty relation ΔtΔH≳1\Delta t \Delta H \gtrsim 1 where ΔH\Delta H is a measure of how accurately the unknown Hamiltonian must be estimated. We then apply this result to the problem of measuring the energy of an unknown quantum state. It has been previously shown that if the Hamiltonian is known, then the energy can in principle be measured in an arbitrarily short time. On the other hand we show that if the Hamiltonian is not known then an energy measurement necessarily takes a minimum time Δt\Delta t which obeys the uncertainty relation ΔtΔE≳1\Delta t \Delta E \gtrsim 1 where ΔE\Delta E is the precision of the energy measurement. Several examples are studied to address the question of whether it is possible to saturate these uncertainty relations. Their interpretation is discussed in detail.Comment: 12pages, revised version with small correction

    Rotational kinetics of absorbing dust grains in neutral gas

    Get PDF
    We study the rotational and translational kinetics of massive particulates (dust grains) absorbing the ambient gas. Equations for microscopic phase densities are deduced resulting in the Fokker-Planck equation for the dust component. It is shown that although there is no stationary distribution, the translational and rotational temperatures of dust tend to certain values, which differ from the temperature of the ambient gas. The influence of the inner structure of grains on rotational kinetics is also discussed.Comment: REVTEX4, 20 pages, 2 figure
    • …
    corecore